Crystal Structure and Magnetic Properties of Sm₃ReO₇

G. Wltschek,¹ H. Paulus, I. Svoboda, H. Ehrenberg, and H. Fuess

Fachgebiet Strukturforschung, Fachbereich Materialwissenschaft, Technische Hochschule Darmstadt, D-64287 Darmstadt, Germany

Received August 14, 1995; in revised form April 1, 1996; accepted April 4, 1996

Crystals of a new ternary samarium rhenium oxide, Sm₃ReO₇ were obtained by subsolidus reaction of samariumsesquioxide and rheniumdioxide (ratio 1.5:1) in sealed Pt–10Rh-tubes at 1673 K. The structure was determined by single-crystal X-ray diffraction. Sm₃ReO₇ crystallizes in the orthorhombic system with unit cell dimensions a = 10.736(5), b = 7.392(3), and c = 7.519(3) in space group *Cmcm* (No. 63) with Z = 4. The structure consists of ReO₆ octahedra, distorted SmO₆ octahedra, and SmO₈ prisms that are interconnected to each other to form a three-dimensional network. Rhenium has the formal oxidation state of +5 but no metal–metal bond is observed in this compound. The observed magnetization in the temperature range 4 K < T < 52 K is explained by a Curie–Weiss law modified by a temperature independent Van Vleck paramagnetism of samarium (3+). © 1996 Academic Press, Inc.

INTRODUCTION

Ternary oxides of rare-earth elements (lanthanum to lutetium including yttrium) and rhenium in an oxidation state below (+7) have been reported by several authors. Only a few compounds have been characterized by single crystal structure determination: La₃Re₂O₁₀ (1), La₄[Re₂] O₁₀ (2), Nd₄Re₂O₁₁ (3), La₄Re₆O₁₉ (4, 5), La₆Re₄O₁₈ (6), Dy₅Re₂O₁₂ (7), Ho₅Re₂O₁₂ (8). Muller and Roy (9) and Baud and Capestan (10) reported extensive studies of several lanthanoid rich lanthanoid rhenium oxides. In this paper the structural and magnetic characterisation of a new samarium rhenium oxide Sm₃ReO₇ with a formal rhenium oxidation state of +5 is described.

EXPERIMENTAL

The synthesis of Sm_3ReO_7 single crystals was carried out by subsolidus reaction of a stoichiometric mixture of reagent grade samariumsesquioxide (Sm_2O_3 , Aldrich 99.99%) and rheniumdioxide (ReO_2 , Alfa 99.99%) in the ratio 1.5:1. All reactants were intimately mixed in an agate mortar under acetone and sealed into an Pt–10Rh-tube with 20 vol% of residual oxygen. The sample was heated in a tube furnace in argon atmosphere with a ramping rate of 300 K/h to 1673 K for 12 h. Afterward it was cooled down with 120 K/h to room temperature. Argon atmosphere was used as a protection measure.

On opening the tube a single phase of prismatic dark black crystals was obtained. Most of the crystals had well developed faces. The mean diameter of a crystal was as large as 0.1 to 0.15 mm. The sample itself was checked microscopically (optical and REM) as well as by EDX (Sm: Re ratio = 3:1) and X-ray examination. The details of the X-ray single-crystal data collection and structure refinement are summarized in Table 1. In order to deter-

TABLE 1 Details of X-Ray Single-Crystal Data Collection and Structure Refinement

Diffractometer: CAD4	Radiation: Mo $K\alpha$, $\lambda = 0.71069$ Å
Fine-focus sealed tube	Graphite monochromator
Detector: Scintillation counter	Pulse-height-discrimination
Scan: $\omega/2\theta$	Cell parameters from 48 reflec- tions (46.1° $\leq 2\theta \geq 53.5^{\circ}$)
Crystal size: $0.05 \times 0.06 \times 0.16 \text{ mm}^3$	Crystal habit: prism
Crystal color: black	Temperature: 300 K
$h = -13 \rightarrow 13$	2636 measured reflections $(3.35^\circ \le \theta \le 27.42^\circ)$
$k = -9 \rightarrow 9$	388 independent reflections $[R_{(int)} = 0.044]$
$l = -9 \rightarrow 9$	
Absorption correction: Psi-scan	
Refinement method (35 param- eters)	Full-matrix least-squares on F^2
GooF = S = 1.145	$\Delta \rho_{\text{max}} = 3.445 \text{ e} \text{\AA}^{-3}, \ \Delta \rho_{\text{min}} = -2.311 \text{ e} \text{\AA}^{-3}$
Final <i>R</i> indices 388 $[F > 2\sigma(F)]$	$R_1 = 0.0303, wR_2 = 0.0721$
R indices 388 (all data)	$R_1 = 0.0312, wR_2 = 0.0727$
Extinction correction: Zacha- riasen	Extinction coefficient: 0.0067(4)
Atomic scattering factors from:	Int. Tables Vol. IV Tables 2.2B and 2.3.1
Structure refinement: SHELXS-86	(11), SHELX-93 (12)

¹ Present address: Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE and Department of Chemistry, University of Cambridge Lensfield Road, Cambridge CB2 1EW.

Space group Cmcm	oup <i>a</i> [Å] 10.736(5)		b [Å] 7.392(3)	c [Å] 7.519(3)	V [Å ³] 596.67(5)	Z 4
Atom	Position		x	у	Z.	$u_{\rm eq} [{\rm \AA}^2]$
Sm(1)	8(g)		0.2746(1)	0.2990(1)	0.25	0.014(1)
Sm(2)	4(b)		0	0.5	0	0.023(1)
Re	4	4(a)	0	0	0	0.012(1)
O(1)	4	4(c)	0.5	0.4238(3)	0.25	0.015(3)
O(2)	16	5(h)	0.1257(1)	0.1850(2)	0.0356(2)	0.026(2)
O(3)	8	8(g)	0.3680(1)	0.0241(2)	0.25	0.017(2)
Atom	U 11	U22	<i>U</i> 33	<i>U</i> 12	<i>U</i> 13	U23
Sm(1)	0.015(1)	0.010(1)	0.018(1)	0.001(1)	0.000	0.000
Sm(2)	0.017(1)	0.034(1)	0.017(1)	0.000	0.000	-0.004(1)
Re	0.014(1)	0.008(1)	0.015(1)	0.000	0.000	0.000(1)
O(1)	0.018(6)	0.010(6)	0.016(6)	0.000	0.000	0.000
O(2)	0.031(4)	0.026(4)	0.021(4)	-0.010(4)	0.003(3)	-0.002(3)
O(3)	0.018(5)	0.007(4)	0.026(5)	-0.004(4)	0.000	0.000

 TABLE 2

 Atomic and Thermal Parameters for Sm₃ReO₇ at 300 K as Derived from Single-Crystal X-ray Diffraction

а

b

TABLE 3Bond Lengths [Å] for theReO₆, SmO₆, and SmO₈ Unitsin Sm₃ReO₇

Sm(1)–O(1)	2.287(5)
Sm(1) - O(2)	2.400(2), 2.419(8)
Sm(1) - O(2)	2.259(9), 2.62(10)
Sm(1)–Re	3.4019(7)
Sm(1)-Sm(1)	3.7284(5)
Sm(1)-Sm(2)	3.7738(7)
Sm(2) - O(2)	2.701(9)
Sm(2)–O(3)	2.359(6)
Sm(2)-Sm(2)	3.7557(4)
Re-O(1)	1.960(4)
Re-O(2)	1.938(8)

mine the magnetic properties magnetization measurements were performed in the temperature range from 4 to 52 K using a SQUID with a field strength of 0.1 T.

RESULTS

Positional parameters for Sm_3ReO_7 are summarized in Table 2. The main interatomic distances are listed in Table 3. The crystal structure of Sm_3ReO_7 is presented in Fig. 1. The formal oxidation state of rhenium in this compound is +5.

FIG. 2. The sixfold oxygen coordination around the samarium-(1) atom in Sm₃ReO₇.

The structure of Sm_3ReO_7 consists of slightly distorted rhenium–oxygen octahedra which build up corner sharing chains in the [0 0 1] direction. Two crystallographic independent samarium sites, six and eightfold coordinated, exist in this structure type. The arrangement of samarium-

FIG. 3. The three-dimensional network of ReO_6 , SmO_6 , and SmO_8 polyhedra in Sm_3ReO_7 : view along the [0 0 1] direction.

FIG. 4. Magnetization as a function of T with an applied field of 0.1 T of Sm₃ReO₇.

(1) and oxygen can be described as a highly distorted octahedron (Fig. 2) which builds up edge-sharing chains extended in the $[0 \ 0 \ 1]$ direction. Two of these chains are interconnected in the $[0 \ 1 \ 0]$ direction and form zigzag layers of corner-sharing SmO₆ octahedra. In addition the bridging oxygen, O(3), is also bonded to samarium-(2). The samarium-(2) environment is presented in Fig. 1. Samarium-(2) and eight oxygen atoms build up a rhombic prism. Two of these prisms are further linked together by sharing a common corner to form chains in the $[0 \ 0 \ 1]$ direction.

The rhenium octahedra are interconnected by O(1). In addition they are also linked to the SmO_8 prism by bridging with O(2) to form edge sharing units. These Sm(2)-Re-O "layers" in the *bc*-plane are interconnected to the next layer in the [1 0 0] direction by parallel samarium-(1) atom layers. Furthermore the samarium-(1)-oxygen octahedra

are linked to the samarium-(2) units by bridging with O(3) atoms sharing a common corner while the rhenium octahedra are connected by bonding with O(2). The three-dimensional network of Sm₃ReO₇ is given in Fig. 3.

The observed magnetization per mole is shown in Fig. 4 together with a fitted Curie–Weiss law modified by an additional temperature independent contribution M_0 . The best fitting parameters are determined to $\Theta = -1.4(1)$ K and $M_0 = 2.95$ emu/mol. The large temperature independent contribution arises from the Van Vleck paramagnetism of Sm(3+). With the assumption that the temperature dependence of magnetization is only due to the rhenium ions, an effective magnetic moment of $|\boldsymbol{\mu}| = 0.6 \ \mu_{\rm B}$ is derived from the Curie constant for each rhenium (5+) ion.

ACKNOWLEDGMENTS

This work was supported by the Deutschen Forschungsgemeinschaft, the Fonds der chemischen Industrie, and the Bundesministerium für Bildung und Forschung.

REFERENCES

- 1. C. C. Torardi and A. W. Sleight, J. Less.-Common Met. 116, 293 (1986).
- 2. K. Walterson, Acta Crystallogr. B 32, 1485 (1976).
- K. A. Wilhelmi, E. Lagervall, and O. Muller, *Acta Chem. Scand.* 24, 3406 (1970).
- 4. J. M. Longo and A. W. Sleight, Inorg. Chem. 7(1), 108 (1968).
- 5. J. P. Besse, G. Baud, R. Chevalier and M. Gasperin, *Acta Crystallogr. B* **34**, 3532 (1978).
- 6. N. Morrow and L. Katz, Acta Crystallogr. B 24, 1466 (1968).
- 7. G. Baud, J.-P. Besse, R. Chevalier, and M. Gasperin, *Mater. Chem. Phys.* **8**, 93 (1983).
- D. H. Heumannskämper and W. Jeitschko, Z. Kristallogr. 178, 99 (1987).
- 9. O. Muller and R. Roy, Mater. Res. Bull. 4, 349 (1969).
- 10. G. Baud and M. Capestan, Bull. Soc. Chim. France 10, 3999 (1968).
- G. M. Sheldrick, "SHELXS-86: Program System for the Solution of Crystal Structures." University of Göttingen, 1986.
- G. M. Sheldrick, "SHELXL-93: Program for Crystal Structure Determination." University of Göttingen, 1993.